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Forward Physics at the EIC.
New Physics, detection, simulation needs.
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Introduction

Forward physics at the EIC
Measuring Heavy Flavor observables
Detector needs

Simulation needs



EIC science from the white paper

Different fundamental physics problems in a wide x and Q2 kinematic region:

 How quarks and gluons are distributed (momentum, space) within the nucleon/heavy
nuclei?

* Who contributes to the spin of the proton and by how much?
* What happens to the gluon density in nuclei, does it saturate at high energy? A. Accardi et al, Eur. Phy. J. A,

529 (2016).
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EIC science from the white paper

Different fundamental physics problems in a wide x and Q2 kinematic region:

* How quarks and gluons distributed (momentum, space) within the nucleon/heavy nuclei?
* Who and how contributes to the spin of the proton?
* What happens to the gluon density in nuclei, does it saturate at high energy?

A. Accardi et al, Eur. Phy. J. A,
52 9(2016).

The EIC will provide a clean environment to study the flavor dependent energy loss in nuclear medium.

* Heavy quarks (HQ: c, d) play a special role & address essential physics at the EIC
* This is accomplished by measuring the elementary particles that contain them: D-mesons and B-mesons

At the EIC HQ are produced from gluons carrying a large fraction x, of the nucleons
momentum (>0.1).
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* How quarks and gluons distributed (momentum, space) within the nucleon/heavy nuclei?
* Who and how contributes to the spin of the proton?
* What happens to the gluon density in nuclei, does it saturate at high energy?

A. Accardi et al, Eur. Phy. J. A,
52 9(2016).

The EIC will provide a clean environment to study the flavor dependent energy loss in nuclear medium.

* Heavy quarks (HQ: c, d) play a special role & address essential physics at the EIC
* This is accomplished by measuring the elementary particles that contain them: D-mesons and B-mesons

At the EIC HQ are produced from gluons carrying a large fraction x, of the nucleons
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momentum (>0.1).

New LDRD project funded by LANL 2020022DR:
Develop a new heavy flavor and jet program
for the future EIC and carry out relevant
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15 permanent staff, and several postdocs detector R&D ] RESEARCH & DEVELOPMENT




Focus: Energy Loss, Hadronization
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Focus: Energy Loss, Hadronization
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Focus: Energy Loss, Hadronization

Rea

Cross section modification

QCD energy loss:

—~ ememmeenion |1 The way in which HQ lose energy as the propagate through the

T
FST at E |C —— Pions, energy loss
——— D mesons, energy loss [
E —— B mesons, energy loss |
- gmpﬁ Credit: = = Pions, absorption L
- = = D meson, absorption
| L Vitev
[[T7] 2-fold variation in

— nuclear opacity

B
—*

D
= -

T —_——
e =o— & __® *—

; - -1
Integrated luminosity in e+p = 10 fb

| Integrated Iuminosity in e+A 500 nb™ ]

1 I 1 l 1 l l 1 1 I 1 I 1 I 1

rxiv:1912.10965.] nucleus is a key to our understanding particle transport in dense

s environment.
1 Transport coefficients as of this date remain largely unconstrained.
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Figure credit: “An Assessment of U.S.-Based Electron-lon Collider Science”



https://www.nap.edu/read/25171/chapter/4

Focus: Energy Loss, Hadronization
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Focus: Energy Loss, Hadronization

R

Cross section modification
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QCD energy loss:

The way in which HQ lose energy as the propagate through the
nucleus is a key to our understanding particle transport in dense
environment.

Transport coefficients as of this date remain largely unconstrained.

Hadronization inside/outside the nuclear medium :

The way in which heavy meson cross-sections are modified in eA
collisions with respect to ep provides the only experimental handle on the
space-time dynamic of hadronization.

Large discriminating power between models of energy loss and hadronization in matter
Can constrain nuclear opacities & transport properties to 20%




Focus: Heavy flavor jets

Heavy flavor hadrons, jets which can be treated as surrogates of initial quarks/gluons and their correlations in
the forward-going nucleon/nucleus direction at the EIC.

e”+poe +jet(DH) +X

Dt 11



Focus: Heavy flavor jets

Heavy flavor hadrons, jets which can be treated as surrogates of initial quarks/gluons and their correlations in
the forward-going nucleon/nucleus direction at the EIC.

d 0°=f(x,)xd 5,xD?(Z,)

 Distributions of partons in nucleons/nuclei (soft scale)
» Partonic cross-section (perturbative)
* Hadronization/evolution (soft scale)

e”+poe +jet(DY)+X

Dt 12



Focus: Heavy flavor jets

Heavy flavor hadrons, jets which can be treated as surrogates of initial quarks/gluons and their correlations in
the forward-going nucleon/nucleus direction at the EIC.

d 0°=f(x,)xd 5,xD?(Z,)

« Determine the initial quark/gluon distribution functions in the poorly constrained kinematic region (x>0.1).
 Input for the evaluation of the quark/gluon fragmentation/hadronization processes.

e”+poe +jet(DY)+X

Dt 13



Focus: Heavy flavor jets

Insight to nuclear medium effects on hadron production (nPDFs modification , parton e-loss mechanisms)
* Insight to hadronization processes
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Uncertainty of gluon distributions in the lead nucleus, which is rather large at both low and high x.



Focus: Heavy flavor jets

Insight to nuclear medium effects on hadron production (nPDFs modification , parton e-loss mechanisms)
* Insight to hadronization processes

2 2
18 L Vs =316-447 GeV 18 VS =316 -89.4 GeV
B 255 2 2 5 =
% Q%=1.69 GeV Q?=1.69 GeV
1.6 0.0, %, 1.6
4 K 25 0.0 0.0, .
e +A- e+tjet (DY) + X SR |
- j t 128 1.2
2 & 4 X ?00’0.0’0‘0.0’0’ ’0’ ---------------- & o 4
o LTRSS S o
G0 0.0, 09.°"0.9.0.9.0.0.9.0.9.
O R IRER LRI 0.8
0.6 [5OSR RRRKRIKRAXRRIELK 0.6
’0’0’0’0‘0‘0‘0‘0‘0‘0‘0‘0‘0‘0‘0‘:‘;‘;’0’ %%
0.4 X ‘:‘0’0.0‘0‘0‘0.0‘0. ‘00 ‘0.0‘ 0.4 &
0.2 :.0.0'00 5 0.2
o ESSRRKXRRK, o " "
. 10 . 1o
L 8- 2 s
E 6 5 6~
¥ ¥ e
2 2
TR [id 14
" p' — \_ tjl 0 : 1 1 1 ) 1 1 = 1
i, e 10 107 1072 107 1 1074 107 1072 107! 1
P - X X
VAT AVATAY, -’\O‘ =
YAVAVAVAVAY. Y, h— 2 2F
i AAY — ) VS =31.6-44.7 GeV 3 VS =316 -89.4 GeV
— : 1.8 / " 18 : ;
— i Q?=10 GeV? 16F Q2 =10 GeV?
T8 3
i E B
o1 _ \\e
PHYS. REV. D 98, 094010 (2018)
0.4 ¢XXX) EPPS16* + EIC (inclusive + chamm)
EPPS16* + EIC (inclusive only)
0.2 EPPS16*
" . L . L
10
S sl EPPS16* + EIC (inclusive + charm) 5 s EUr.Phys.J.AZ2016,52,268
S sl EPPS16" + EIC (inclusive only) /—\ S 6
¥ b 3 ol
2™ =P
o 0 L 1 1 is 0 1 1 1
10 107 1072 107 1 1074 107 102 107 1
X X

-~ comparison of measured cross section between ep and e-A collisions. 15



VEES 4 s CEVAAOEILE

Open heavy flavor measurements:

Unambiguous signature via displaced vertices
b jet

—————— b hadron \

311.8 ym mpact

parameter

D cr

285 secondary

49 1 : 1 /’Lm vertex

4

do .- A8

- U

>8_— primary vertex

B:I: CT

Need precise vertex determination

Need excellent spacial, timing resolution and
IOW materlal bUdget' Sketch credit M. Durham

—

precision measurements needed for a robust
heavy flavor physics program 16



Proposed R&D: Forward Silicon Tracking detector

Goal is to measure heavy flavor products and their correlations in the forward direction at the EIC

Y axis (mm)

Primary e
Au vertex . )
transvers b;: particle ‘.
plane transverse decay X axis (mm)
length " — - "
: " : Z axis (mm)

Mid-rapidity silicon vertex detector: 2 barrel layers MAPS or other silicon detector.

Forward-rapidity silicon tracking detector (FST): 5 forward planes of silicon detection.

Technology options are being studied in detail 17



R&D FST: Fast simulations

Goal is to measure heavy flavor products and their correlations in the forward direction at the EIC

= + = .

TC+ v IK TC+ K K Y axis (mm)
. + o + = + B
i T\ K m\/E [ -

X axis (mm)

Z axis (mm)

Fast simulations have been set up to explore detector performance:
pixel size, X, trigger integration time...

1 triggered event embedded with background events.

18



FST Fast simulations: Track performance

Tracks with p, > 1 GeVic, 1.5<n<4.0

PrOJected P, dependent impact parameter b resolution Projected P, dependent momentum resolution de/pT
E 100 : H - F
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2 [ B s g
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FST Fast simulations: Track performance

Tracks with p; > 1 GeV/c, 1.5<n<4.0

Projected P, dependent impact parameter bT resolution Projected P, dependent momentum resolution de/pT
E 10 : H o~ [
= F nin FST tol ‘a C
c - ©-N= c
2 I S n=25 s 'F
% B ¥ N =§ 5 -
) B = N=95 o B
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« Left: 70 um resolution or better can be achieved by the initial FST design

 Right: preliminary momentum resolution, dp,/p; , is in line with the EIC detector handbook (forward
tracking requirements.)
20



FST Fast simulations: Particle reconstruction

Tracks with p; > 1 GeV/c, 1.5<n<4.0
xv8 Q° for n* x vS Q? for K* X vS Qfor p (p)

Inclusive combination of K*/x* pairs
25000

o EIC forward Cal. only

20000 E.: 18.0GeV

E,: 100.0 GeV + w/ LANL proposed FST
Int. Luminosity: 10 fb™
15000— 1065
§ % ¢ %g ¢
10000[— ¢¢¢¢ o
B ¢¢ Q%Spé%? 2 + 2 +
N Q%Qé&b ~ xvS Q° for D* xvS Q for B*
sonf- Do, Redngh | PYTHIAS MC
: "W.: ." g E. =18 GeV
L [ Al
165 17 175 18 185 19 9 2 0 2.1 _
GEV/C T Ep - 20 Gev
1.0<n<45
L £ .:10fb*

 Identification of D° mesons while reducing the combinatorial Eackground

« Hadron reconstruction in a wide kinematic region. 1



FST R&D Full simulations

Full Simulations:

~* Ongoing exploratory work in ep and eA Montecarlo
simulations with existing EIC tools (EICRoot)

* Integration with other detectors.

Brookhaven EIC detector coWee5t (BEAST)
22



FST R&D Full simulations

e-Al event (Geant4)
3 planes of Si

Full Simulations:

\.& WAy s = * We are currently working towards a longer term
full detector simulation.
’-'.-l-""""_ . ‘-....

ep event (Geant4)

e-Cu event (Geantd) + forward region detectors+ TPC

+ forward region detectors+ TPC




Full simulations a brief status

A variety of EIC specific simulations have been implemented by EIC collaborators.
All will need revisiting/updating. Ongoing effort by the EIC R&D and software group.
Software is bound to existing detector concepts (see A Kiselev’s presentation CFNS PID workshop)

24


https://indico.bnl.gov/event/6351/

Full simulations a short selection

EicROOT- Modular Geometry:

<« * BeAST incorporated and
flexibility to append detector in
forward region (LEGO style)

e Tech support exists
» Tracking& vertexing rudimentary

see A Kiselev’'s presentation CFNS PID workshop

25
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Full simulations a short selection

e GEM/sTGC Tracking Pb/Sc sandwich Fun4All- Short term future
ok Stations(z = 120, 165, 50- | hadronic
EMCAL 100pmin ¢, leminr) calorimeter (NEW)

Central DIRC
far PID Inner HCA

_ 10 x 10 x 100 cm? * ePHENIX incorporated and
""" 2 T LS S S ongoing work to append detector

Forward RICH forhadron FID |n forward reglon

20x20 array of * Tracking, vertexing , digitization
2.2x2.2x18 cm? ° Support eXiStS

PEW (PHENIX MPC)
crystals with 10x10

square hole

(300 crystals total)

3.0-3.3<n <40

Flux return door
between FEMCand
FHCAL (10.2 ¢m)

Endeap crystaieme | | PHENIXPbSc modules (5.5 x 5.5 x 33 cm?) organized in
for scattered e-: groups of four modules(3152 medules or 788 groups of 4]
b ot (1.4 <1 <3.0-3.3), energy rezolution 8%/ VE

O = Smin'(E

see A Kiselev’s presentation CFNS PID workshop 26
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Full simulations a brief summary

A variety of EIC specific simulations have been implemented by EIC collaborators.
All will need revisiting/updating. Ongoing effort by the EIC R&D and software group.

Physics generators ep and eA (to name a few, most which we have tested)

e Pythia, PythiaeRHIC, SARTRE
 DPMJetHybrid
* BeAGLE: based on DPMJetHybrid.

Particle transport /Si simulation tools
 Geant3 - Geant4
* LIiC, originally developed for ILC (eRD16 LBNL)

Software and detector geometry from ongoing EIC R&D

* EICRoot (BeAST geometry) GEANT-3

* Fun4All (ePHENIX/sPHENIX geometry) GEANT-4

 eJANA (Jlab) GEANT-4

« and more... 27



Final words

» Exciting times ahead for our field

* Lots of new collaborations are being forged and planned to achieve the physics
program | described today

* Alot of work needs to be done before we get to detect heavy quarks in our EIC
detectors and evaluate their signatures.

TInN
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NATIONAL LABORATORY
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Extras




Focus: Heavy flavor hadrons, jets

Heavy flavor hadrons, jets which can be treated as surrogates of initial quarks/gluons and their correlations in
the hadron/nuclei going (forward) direction at the EIC.

* Determine the initial quark/gluon distribution functions in the poorly constrained kinematic region.
 Input for the evaluation of the quark/gluon fragmentation/hadronization processes.
* Provide further information on the gluon Sivers function and other spin observables.
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Vertex Detector Requirements

EIC Detector Requirements and R&D Handbook v1.1

EIC Detector Requirements

Tracking Electrons wK/p PID HCAL Muons
n MNomenclature
Resolution Allowed X/ Xo Si-Vertex Resolution os/E PID p-Range (GeV/c) Separation Resolution og/E
-69 — -5.8 low-Q2 tagger 8568/8 <1.5%; 10€ < Q2
=102 GeV2
Auxiliary
—~J 1 p/A
% -4.5 — -4.0 Detectors | |nstrumentation to
= separate charged
o -4.0 — 3.5 particles from photons
=) -3.5 — -3.0 2euE
Op/p ~ 0.1%xp+2.0%
"E 3.0 — 2.5
=-
A s Backwards Detectors =7 GeVic ~50%/E
8 -2.0 —-1.5 Gplp ~ 0.05% xp+1.0% )
= 7ouivE T suppression
= -1.5 —-1.0 up to
] 1:104
= -1.0 — -0.5 ;
o
= -0.5 — 0.0 Gyz ~ 20 pm,
Central o, o o do{2) ~ do(rep) ~
Eﬁ oo e = Detector Barrel Op/p ~ 0.05% xp+0.5% @ ~5% or le 20/pr GeV um + =5 GeV/c =30 TBD TBD
— 5 pm
= 05 —1.0
=
= 10— 1-5
2| =8 GeV/c
a 1.5 —20 Gplp ~ D.05% xp+1.0% 0-12)%/E
% 20 — 2.5 Forward Detectors —50%/VE
§- 55 _30 =20 GeV/c
—
=1 Op/p ~ 0.1%xp+2.0%
= Shl=Ea =45 GeVic
35— 4.0 Instrumentation to
separate charged
4.0 — 4.5 particles from photons
Auxiliary
Te Detectors
> 6.2 Proton Spectrometer Cintrinsic (111t < 1%;
Acceptance: 0.2 <pt <
1.2 GeV/c
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Monolithic Active Pixel Sensor (MAPS)

* The ALPIDE chip used for ALICE ITS
upgrade and sPHENIX MVTX detector.

* 1024X512 pixels locate in the
3.0cmX1.5cm active region. Each pixel
contains the charge sensitive amplifier,
discriminator and 3 hit buffer.

e 11M channels in a 10X10 cm2 active
region.

Architecture of each pixel

30 mm

15 mm

Analog DACs

Digital Periphery

S —

1024 x 29.24'um = 29941.76 um

um = 13,76 mm
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e e © o o o e

zero-suppression data
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; ':b Shaper Buffer
i IBIAS —)
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________________________________________________________________________________
STROBE

Courtesy of Xuan Li (LANL)

Y

Region Readout
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Data Formating
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Seral Data
Transmission
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Readout chain of the MAPS
e Under R&D. Take the sPHENIX design for examble:

sPHENIX GL-1 & GTM

ALPIDE Sensor

= e AN DBUS

=]
2
()
o
o
[74]
[+T+]
=

510 m

A
[
/34;3\{9 Chock + Central + Trigge
e O O O | -
1  —— =

T ‘
- 4

Data (9.6 Gbhfs max)

‘\ ‘f‘ _ ] L ——————} - Trigger
=— = E-... Samtec Twinax g
\ | - “FireFly” 3
—
\| FPC Power |
7 = - - - E a
9 ALPIDE i o
siaghe Tk Filtering | (MM rec.lators s— 5
Cold Capacitors Regulated | B B i g
Plate Power : 3
...... e m—
Board e

* Although the spatial resolution can reach ~ 5 um, but
the typical integration time is ~5 us.
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Readout components for MAPS
* Front end electronics - the Readout Unit (RU):

* One RU can read one stave with 9 ALPIDE sensors.

Power board
monitoring and
contral

I E '_.‘: ;,...,,,...,.1 .el ﬁj i e
Iﬁr *"‘—‘mm««[{e]:_—;ﬁ‘ E

! Programmable Logic |

I

Redundant slow
control from DCS
through CAN bus

Courtesy of Xuan Li (LANL)

Temperature,
wvoltage & current
monitoring

3.2 Ghys =ik : o
E e ] B cacD | | Lerei
{ = L

3.2 Gbfs =

Data @ 3.2 Gb/s

WTTE

oA sl
3.2 Gb/s N | ey Ty D Data @ 3.2 Gb/s
- - . S0 150

» ; -.JL:x.:- -.{ Lases Deacia I.- ‘-"..I Q

R = rosa - Data @ 3.2 Gb/s

TRy
3.2 Gbfs _jais - :

W o | P ey 7] - Trigger
3.2 Gb/s gg,._i_&..; g i -

= = L—;rl‘_ﬂ—g Available

Plot from ALICE
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4.8Gb/s

4.8Gb/s

optical connectors

Readout components for MAPS

* Back end electronics - the Felix board, the full integration still under
R&D:

e Use the GBT mode, one Felix board can read 4 RUs connected with 4
staves.

GBT x24

GBT Mode | ©

X
[V

e 2
E FromHost Path<'i wu pper
b PCle engine
,Emu‘ Central Router DMA
“o-Ho . ToHost PATH Registermap

Configuration registers: control and monitor.

~ PCle Gen3 x8

:

Plot from ATLAS

GBT mode

Line rate: 4.8 Gb/s

Up to 24 bidirectional optical
links

3.2 Gb/s payload with FEC or
4.48 Gb/s payload

Routes TTC information
Optical link divided in E-Links
Communicate with GBTx &
GBT-SCA



* Frame rate 50 kHZ.

DEPFET modules

* Used for the PXD detector of Belle Il experiment.

* 2.4M - 3.6M channels in a 10X10 cmz2 active region.

| Layer 1 Layer 2 - Switchers
Module | 8 12
Radii | 14 mm 22 mm

Ladder Size

15x136 mm?2

15x170 mm?2

i . 50x55 pm? 50x70 pm?2
Pixel S
i SRS 50x60 pm2 50x85 um2
Pixels | 250x1536 250x1536
Thickness | 75 pm 75 pm
THINNED!

B (bwd)

Courtesy of Xuan Li (LANL)
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Belle Il PXD readout schematics

Module

=
E
=

e e e

Radii 14, 22 mm

Sensitive length 90 (L1}, 122 (L2) mm

Sensitive width 12.5 (L1-1L.2) mm

R e e T Mumber of ladders E, 12
i o 2 Pixel size 55x50 & 60x50 (L1), 70x50 & 85x50 (L2) pm2
- Capacitors
Resistors rfo time per frame 20 Hs

Mumber of pixels 8 Mpix
| | DAQ, data reduction |

Data [1 Optical fiber I ROI selection
Optical transmitter Dock Box Ha[_:l;d.:ng i a

u [ Optical fiber )] FTSW, clock, tri
|\‘ 0 Cam Bk cablE i_: (D ] 1 3 i j E . Eﬂﬁl:
Patch Ethernet cable 1 - m{m@mmjlu 1 Ethernet i

& “Band bl . :
I Panel e J ||I - i i 3 Slow control
Power cable 1 ! S— A oo EtEemEean g
s _ L] Puwer—mhler 1 PS
apacitors ~ 2 ~ 15m

Capacitors
Courtesy of Xuan Li (LANL) 37



Belle Il PXD single module ASICS

* DCDB (Drain Current Digitizer)

* ADC (for electrical current) L o
¢ UMC 180 nm QI‘ SN
* 256 input channels 1y
* 8-bit ADC per channel
* 92 ns sampling time Z“: 3. e
* Rad hard tested (7 Mrad) AN

* DHP (Data Handling Processor) g el
* IBM CMOS 90 nm, TSMC 65 nm e /™ Switchers
* Zero suppression (analog readout) ol
* Pedestal correction Y

* Timing and trigger control
e Rad. Hard tested (100 Mrad)

 SwitcherB (Row Control)
* AMS/IBM HVCMOS 180 nm
* Gate and Clear signal
* 32x2 channels
* Fast HV ramp for Clear
* Rad. Hard tested (36 Mrad) it
Courtesy of Xuan Li (LANL) 38
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Belle Il PXD backend readout system

ONSEN AMC card
v4.0 (final)
Virtex-5 FX70T

2 optical links
(6.25 Gbps)

GbE

Daughter Board
AMC (UuTCA)

((((((
Carrier Board

XTCA

ONSEN xTCA carrier card

v3.3 (final)

Virtex-4 FX60
(switcher
to ATCA backplane)

GbE

add-on:
RTM board
power supply board

Courtesy of Xuan Li (LANL) 39
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